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The functionality of proteins is governed by their structure in the native state. Protein structures are made up
of emergent building blocks of helices and almost planar sheets. A simple coarse-grained geometrical model of
a flexible tube barely subject to compaction provides a unified framework for understanding the common
character of globular proteins. We argue that a recent critique of the tube idea is not well founded.
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The protein problem �1–3� is one of formidable complex-
ity. The number of degrees of freedom of the protein atoms
as well as the surrounding water molecules, which play an
essential role in the folding process, is enormous. In addi-
tion, a protein chain is relatively short compared to macro-
molecular polymer chains and one might therefore expect
significant nonuniversal behavior with the details mattering a
great deal. Furthermore, the sequences of proteins have been
subject to evolution and natural selection, a history depen-
dent process. Yet there are striking patterns that one observes
in protein behavior.

All proteins fold rapidly and reproducibly �4� and their
native state structures are made of common building blocks:
helices and zig-zag strands assembled into almost planar
sheets. For globular proteins to serve vital enzymatic roles,
their folded structures need to be flexible. The total number
of distinct folds adopted by globular proteins is only of the
order of a few thousand �5�, a remarkably small number

compared to the profusion of structures one might have ex-
pected for compact chains comprising a few hundred mono-
mers. Furthermore, it is believed that the folds are evolution-
arily conserved �6,7�. Many protein sequences adopt the
same native state conformation �8�. Once a sequence has
selected its native state structure, it is able to tolerate a sig-
nificant degree of mutability except at certain key locations
�9�.

It has been suggested that these common attributes of
globular proteins �10–13� reflect a deeper underlying unity in
their behavior. Yet, a protein molecule along with the sur-
rounding water molecules constitutes a system of great com-
plexity. Such a system can be described at many levels. At
the finest level, one would simply treat the entire system with
all the degrees of freedom with the laws of quantum mechan-
ics. The difficulties associated with a first-principles quantum
mechanical approach include the large number of degrees of
freedom; the necessity of calculating the interactions during
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the dynamical process of folding, with the solvent taken into
account in an accurate manner; and, even if the interactions
were known exactly, the limitations of present-day comput-
ers in being able to accurately follow the dynamics through
the folding process. Understanding such a system at this
level of description is a daunting task and has not yet been
achieved.

Any alternative coarse-graining procedure implies the de-
termination of effective interactions that are postulated to
arise on integrating out the degrees of freedom of the water.
For example, Pitard et al. �14� have studied the folding and
anisotropic collapse of a microscopic continuous model of a
homopolymer chain where each monomer carries a dipole
moment. In an equilibrium description of any such coarse-
grained model, the effective potential not only depends on
the protein conformation as represented by the values of the
coordinates of the atoms of the protein but is also a function
of the temperature. The averaging is envisioned to be carried
out under the assumption of an instantaneous equilibration of
the fine details represented by the coordinates of the water
molecules. However, the folding of a protein is not an equi-
librium situation but entails dynamical processes that cannot
be captured within an equilibrium description.

The helix is a natural, compact conformation of a short,
flexible tube. This motivated us �12,13,15–19� to investigate
the phase behavior of a flexible tube subject to compaction in
order to investigate whether it is related to and can explain
protein behavior. The tube is anisotropic and may be thought
of as the continuum limit of a discrete chain of disks or
coins. Unlike a chain of spheres, a chain of coins accurately
captures the symmetry of a chain molecule because associ-
ated with each object along the chain is a special local axis
defined by the tangent to the chain and represented by the
axis perpendicular to the face of the disk. The amino acids
have sidechains which stick out in a direction lying approxi-
mately in the plane of the disk. Unlike an ordinary garden
hose, the tube is one in which each disk orients itself in such
a way that the sidechain sticks out at an angle of around 143°
from the normal vector �20� joining the disk center to the
center of the circle passing through the center of the disk and
the centers of its two adjacent neighbors. The tube model
does not arise from an integration of some of the degrees of
freedom of a microscopic model.

For a short discrete tube, with less than 20 residues �with
the same bond length and typical thickness of a polypeptide
chain�, helices and planar hairpins and sheets are found to be
the preferred structures in a marginally compact phase in
which the attractive forces promoting compaction barely set
in. This is due to the self tuning of two key length scales, the
thickness of the tube and the interaction range between the
centers of the disks, to be comparable to each other. When
the tube thickness is much larger than the interaction range,
one cannot avail of the attractive interaction and one obtains
a highly degenerate swollen phase. In the other extreme in
which the tube thickness is much smaller than the interaction
range, one obtains a highly degenerate compact phase—there
is a great deal of flexibility in the relative placement of
nearby tube segments. The marginally compact phase opens
up in the vicinity of the phase transition between these two
phases, when the two length scales become comparable to

each other. In the marginally compact phase, there is a great
reduction in the degeneracy of the ground state structures
with a requirement that nearby tube segments be right along-
side and parallel to each other.

Two basic requirements must be met by neighboring tube
segments in the marginally compact phase in order for them
to maximally avail of the attraction that has barely set in.
First, the anisotropy of a tube requires that neighboring tube
segments be parallel to each other rather than be perpendicu-
lar and consequently progressively separating from each
other. Second, because the range is such that the attraction
has just set in, it is crucial that neighboring segments not
only be approximately parallel to each other but right along-
side each other. A simple way of understanding how a pro-
tein is automatically poised to be in the marginally compact
phase is by noting that hydrophobicity, which drives the self
attraction of a tube, requires that the buried area associated
with the tube be as large as possible. This drive ensures that
neighboring tube segments are placed right next to each
other to facilitate effective screening of the water.

The � helix is tightly packed with the main chain atoms
fitting snugly within the helix. Likewise, in a sheet, the space
between neighboring strands is occupied by the main chain
atoms. In both cases, the scaffolding is provided by hydrogen
bonds between the N-H group of one amino acid and the
C=0 group of another. Both the tube size and the range of
the interaction are governed by the geometry of the protein
determined by quantum chemistry and more specifically the
locations of the main chain atoms. The amazingly perfect fit
of the quantum chemistry, e.g., the planarity of the peptide
bond and the lengths of the covalent and hydrogen bonds, to
the structures in the marginally compact phase is especially
noteworthy.

This simple tube model is closely related to the seminal
contributions of Pauling �21–23� and Ramachandran �24�.
Both of them considered the protein backbone which is the
common part of all proteins. Pauling and his co-workers ex-
plored the types of structures that are consistent with both
the backbone geometry and the formation of hydrogen
bonds, which would then provide the scaffolding for such
structures. They predicted that helices and sheets are the
structures of choice in this regard. Ramachandran and his
co-workers considered the role of excluded volume or steric
interactions between nearby amino acids along the sequence
in reducing the available conformational phase space �see
Ref. �25� for a recent assessment of such effects on longer
sequence stretches and Ref. �26� for a discussion of steric
restrictions in protein folding�. Astonishingly, the two sig-
nificantly populated regions of the Ramachandran plot corre-
spond to the � helix and the � strand. Even though backbone
hydrogen bonds and steric constraints are not related to each
other, they are both promoters of helices and sheets. One
might ask whether this concurrence of events is a mere ac-
cident. The results from the simple tube model provide a clue
that the answer might be negative suggesting that proteins,
which obey physical law, may have been selected to conform
to the tube geometry through steric interactions between
nearby amino acids along the sequence and hydrogen bonds
between backbone atoms. Hydrogen bonds serve to enforce
the parallelism of nearby tube segments �27�, a feature of
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both helices and sheets while steric constraints emphasize
the non-zero thickness of the tube.

A more refined tube model �12,13� was subsequently in-
troduced by incorporating the geometrical constraints of
backbone hydrogen bonds and a local bending energy pen-
alty term. In its simplest form, the model describes the hom-
polymer character of the main backbone chain. At odds with
conventional belief, it was suggested that the gross features
of the energy landscape of proteins result from the amino
acid aspecific common features of all proteins and that pro-
tein structures lie in a marginally compact phase, analogous
to the simple tube model. This landscape is (pre)sculpted by
general considerations of geometry and symmetry and has
around a thousand broad minima corresponding to putative
native state structures. For each of these minima, the desir-
able funnel-like behavior �28� is already achieved at the ho-
mopolymer level. The interplay of the three energy scales,
hydrophobic, hydrogen bond, and bending energy, stabilizes
marginally compact structures, and also provides the close
cooperation between energy gain and entropy loss needed for
the sculpting of a funneled energy landscape. Further, the
marginally compact phase is poised in the vicinity of a phase
transition to the swollen phase and confers exquisite sensi-
tivity to the structures within the phase �13�.

In a recent manuscript, Hubner and Shakhnovich �29�
�HS� have presented a critique of the tube model. They state:
“The tube model predicts that geometrical and topological
factors alone, without inclusion of more chemically detailed
hydrogen bonding interactions, determine global features of
protein folds such as protein-like secondary structure.” They
then make the premise: “Therefore, if tube models have im-
plications for real proteins, one would expect similar forma-
tion, upon collapse, of helices and secondary structure motifs
in a model that accurately represented the geometric and to-
pological properties of amino acid chain in terms of excluded
volume and torsional degrees of freedom �as opposed to a
featureless tube�, but is devoid of explicit hydrogen bond-
ing.” This expectation is unfounded, since the simple tube
model does predict the emergence of secondary structure
�helices and sheets� in the absence of explicit hydrogen
bonding for very short chains. While the “compaction of a
realistic protein chain model without consideration of hydro-
gen bonding does not necessarily result in helical geom-
etries” �29�, excluded volume and packing of a short tube are
sufficient to understand the emergence of proteinlike second-
ary structure. Furthermore, in Ref. �30� there was no attempt
made to explain the existence of � sheets by invoking “a
change in the relative sizes of the solvent and tube,” but
rather the results of the numerics were described in terms of
common folding motifs.

Let us consider the coarse-graining description of HS, in
which protein coordinates representing all atoms are repre-
sented as impenetrable hard spheres of physical radii and the
degrees of freedom associated with the water molecules are
subsumed in a knowledge-based atomic interaction potential
consisting of weak nondirectional van der Waals interactions
and stronger hydrogen bonds which are highly dependent
upon geometry. This representation of treating atoms as hard
spheres and replacing the quantum mechanics with effective
classical potentials is a coarse-graining which only works as

long as the essential ingredients underlying the system are
captured adequately. What HS demonstrate is that, in their
model system, classical potentials mimicking directional hy-
drogen bond formation and van der Waals effects promoting
overall compaction lead to parts of the sequence folding into
helices. It is then not surprising that throwing away the hy-
drogen bonds and retaining just the van der Waals interac-
tions leads to no helix formation in the HS model �29�. This
result merely suggests that at this scale of description, and
for chain lengths considered by HS, the directional hydrogen
bonds play a key role.

A short self avoiding tube subject to a self attraction pro-
moting compaction, in its marginally compact phase, curls
up into a helix with a specific pitch to radius ratio �15,30�
close to that observed in real protein helices and also forms
zig-zag strands which assemble into almost planar sheets
�16–18�. Interestingly, this model, which is sufficient for un-
derstanding individual secondary motifs of a protein, does
not require the incorporation of any classical potential mim-
icking hydrogen bond formation as in the HS model. The
directionality of the hydrogen bonds is crudely captured by
the inherent anisotropy of a tube. Because the simplest de-
scription of any chain molecule is effectively that of a tube,
this result applies to any generic polymer chain, provided it
is poised in the marginally compact part of the phase dia-
gram. It is interesting to note that synthetic oligomers have
been shown to fold into helices without the presence of hy-
drogen bonds �31�.

The emergence of a proteinlike secondary structure with-
out the need of explicit hydrogen bonds, for short chains
within the context of the simple tube model, does not imply,
however, that we “challenge the view that hydrogen bonding
plays an important role in protein structure,” as stated by HS.
The simple tube model, which describes a generic polymer
chain, needs to be refined in order to capture the properties of
a polypeptide chain. A more realistic yet still simple geo-
metrical model considers amino acid aspecific geometrical
constraints arising from the chemistry of hydrogen bonds
and steric effects and leads to assembled tertiary structures
even for a chain consisting of just one type of amino acid
�12,13�. It has been shown that this refined model provides
behavior in remarkable accord with that of proteins. The
marginally compact phase within this model also provides a
simple explanation for the generic formation of amyloid
�32�, and elucidates the role of sequence design in promoting
the fitness of proteins in the environment of cell products and
it shows how the limited menu of geometrically determined
folds act as targets of natural selection �13�.

Let us discuss some familiar phases of matter—the fluid
phase, the crystal phase, and the liquid crystal phase. The
simplest way to understand the fluid and crystal phases is by
means of a system of hard spheres �33�. Note that the hard
sphere description in this context or, for that matter, in the
HS model is itself an emergent property �34�. At low densi-
ties one obtains a fluid phase, whereas at higher packing
fractions one obtains crystalline order. Liquid crystal phases
�35� arise when the objects making up the material are no
longer isotropic. Consider the formation of smectic liquid
crystals. Though Onsager showed that long enough rods will,
in general, form nematic phases independent of their precise
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geometry, the same is not true for smectics. Indeed, sphero-
cylinders undergo a nematic-to-smectic phase transition at
high enough density �36� whereas ellipsoids do not seem to
form smectics at any density �37�. Again, the fact that the
latter does not form the smectic phase is not indicative of the
failure of excluded volume to predict and control liquid crys-
talline phases; rather, it highlights the sensitivity to the de-
tails of the specific model, just as the HS model shows that
removal of the hydrogen bonds destroys the tendency to
form helices.

Consider the sodium chloride structure adopted by ionic
crystals such as NaCl, LiCl, KBr, and AgCl. The NaCl struc-
ture is a fcc arrangement for the Cl ions with the sodium ions
occupying the octahedral holes. Let us consider how the
structure of the Cl ions may be determined. One can do a
very careful quantum mechanical calculation and show that
this fcc structure arises from considerations of electrovalent
bonding. Alternatively, following the pioneering work of Ke-
pler �38� or the everyday experience of grocers, one realizes
that a collection of spherical cannonballs or apples are best
packed in a fcc lattice. One may then be emboldened to
suggest that considerations of packing, periodicity and the
correct symmetry �note that a packing of cubes instead of
spheres would not lead to a fcc lattice but rather a simple
cubic lattice� are the essential ingredients that determine the
menu of possible crystal structures. In other words, the es-
sential elements underlying the fcc structure are not the de-
tails of the interatomic interactions or even the quantum me-
chanics which describes the interactions of all matter but
rather the considerations of geometry and symmetry. It is of
course remarkable that nature has found such a perfect fit
between the quantum interactions in NaCl and the fcc struc-
ture.

The HS exercise has a simple analogy. Let us say that a
claim was made that close packing of spheres leads to a fcc
structure without invoking charges and electrovalent bond-
ing. Consider now doing a calculation with effective poten-
tial energies of interaction incorporating the electrovalent in-
teractions on a microscopic model of the Cl ions and finding
that one recovers the fcc lattice structure correctly. This
would suggest that the model studied has enough features to
produce the right answer. Let us then imagine that on leaving
out the electrostatic interactions, one finds in this model that
the structure is no longer fcc. Would one conclude from this
observation that the original claim that close packing of

spheres leads to a fcc structure is wrong? Of course not. Such
a result would merely serve to show that, in the model being
studied, the electrovalent interactions were important to get
the right result. Indeed, it is well known that the structure of
NaCl at the atomic level is in fact described by electrovalent
interactions. Back to the protein context, the importance of
hydrogen bonds in determining protein structure has been
recognized for more than five decades. The HS finding was
contained in a statement in Hoang et al. �12�, “Our work here
underscores the importance of hydrogen bonds in stabilizing
both helices and sheets simultaneously �without any need for
adjustment of the tube thickness� allowing the formation of
tertiary arrangements of secondary motifs. Indeed, the fine-
tuning of the hydrogen bond and the hydrophobic interaction
is of paramount importance in the selection of the marginally
compact region of the phase diagram in which protein native
folds are found.” The utility of the tube paradigm arises from
its ability, in the marginally compact phase, to capture the
essential ingredients underlying helix and sheet formation.

Consider a theoretical challenge of determining the crys-
tal structure for a material such as NaCl. One route would be
to study the quantum chemistry of the material in detail and
calculate from first principles that the correct structure is a
face-centered-cubic crystal. Alternatively, one might opt to
first catalog the list of possible structures based on consider-
ations of space filling and translational symmetry and then
select the best fit structure from this list. The key point is that
the structure transcends the chemical housed in it and is de-
termined by the overarching constraints of geometry and
symmetry. The fact that many protein sequences adopt the
same fold and that the menu of possible folds is limited �39�
strongly suggest that similar considerations may be at play
here as well even though proteins are neither infinite in ex-
tent nor periodic. The close packing of a flexible tube in the
marginally compact phase is then the analog of the grocer’s
packing of apples for this problem.

In conclusion, we believe that the results of the HS analy-
sis do not disprove the tube idea.
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